A Bayesian Approach to Model Uncertainty

This paper develops the theoretical background for the Limited Information Bayesian Model Averaging (LIBMA). The proposed approach accounts for model uncertainty by averaging over all possible combinations of predictors when making inferences about the variables of interest, and it simultaneously addresses the biases associated with endogenous and omitted variables by incorporating a panel data systems Generalized Method of Moments estimator. Practical applications of the developed methodology are discussed, including testing for the robustness of explanatory variables in the analyses of the determinants of economic growth and poverty.
Publication date: April 2004
ISBN: 9781451849028
$20.00
Add to Cart by clicking price of the language and format you'd like to purchase
Available Languages and Formats
paperback else
English
Prices in red indicate formats that are not yet available but are forthcoming.
Topics covered in this book

This title contains information about the following subjects. Click on a subject if you would like to see other titles with the same subjects.

Dynamic Panel Estimation , Bayesian Model Averaging , probability , probabilities , hypothesis testing , bayes factors , equation

Summary