Hungary’s Corporate Sector Risk: A Machine Learning Approach

In recent years, Hungary’s non-financial corporations were confronted with multiple shocks, ranging from the pandemic and rising geopolitical tensions to the historic tightening of domestic monetary policy.
READ MORE...
Volume/Issue: Volume 2024 Issue 038
Publication date: August 2024
ISBN: 9798400287916
$15.00
Add to Cart by clicking price of the language and format you'd like to purchase
Available Languages and Formats
paperback else
pdf else
epub else
English
Prices in red indicate formats that are not yet available but are forthcoming.
Summary

In recent years, Hungary’s non-financial corporations were confronted with multiple shocks, ranging from the pandemic and rising geopolitical tensions to the historic tightening of domestic monetary policy. Employing machine learning techniques, this paper examines the determinants of Hungarian listed firms’ credit risk evolution over this period. Our analysis shows that both firm-specific and macroeconomic factors played a role in explaining the observed rise in firms’ default probability at onset of the pandemic, although Hungarian corporates proved broadly resilient, with risk indicators quickly improving a year after. Firms’ credit risk rose again in 2022, however, as both long-term interest rates and sovereign risk premia sharply increased, despite continued improvements in firms’ financial ratios. This development merits continued monitoring, particularly since a significant portion of corporate loans are set to mature within the next few years and could be repriced at higher interest rates.