Testing for Structural Breaks in Small Samples

In a recent paper, Bai and Perron (2006) demonstrate that their approach for testing for multiple structural breaks in time series works well in large samples, but they found substantial deviations in both the size and power of their tests in smaller samples. We propose modifying their methodology to deal with small samples by using Monte Carlo simulations to determine sample-specific critical values under the each time the test is run. We draw on the results of our simulations to offer practical suggestions on handling serial correlation, model misspecification, and the use of alternative test statistics for sequential testing. We show that, for most types of data generating processes in samples with as low as 50 observations, our proposed modifications perform substantially better.
Publication date: March 2008
ISBN: 9781451869378
$18.00
Add to Cart by clicking price of the language and format you'd like to purchase
Available Languages and Formats
paperback else
English
Prices in red indicate formats that are not yet available but are forthcoming.
Topics covered in this book

This title contains information about the following subjects. Click on a subject if you would like to see other titles with the same subjects.

Structural breaks , small samples , Monte Carlo simulation , time series , correlation , statistic , autocorrelation

Summary